2,927 research outputs found

    Rearranged Stochastic Heat Equation

    Full text link
    The purpose of this work is to provide an explicit construction of a strong Feller semigroup on the space of probability measures over the real line that additionally maps bounded measurable functions into Lipschitz continuous functions, with a Lipschitz constant that blows up in an integrable manner in small time. Our construction relies on a rearranged version of the stochastic heat equation on the circle driven by a coloured noise. Formally, this stochastic equation writes as a reflected equation in infinite dimension, a topic that is known to be challenging. Under the action of the rearrangement, the solution is forced to live in a space of quantile functions that is isometric to the space of probability measures on the real line. We prove the equation to be solvable by means of an Euler scheme in which we alternate flat dynamics in the space of random variables on the circle with a rearrangement operation that projects back the random variables onto the subset of quantile functions. A first challenge is to prove that this scheme is tight. A second one is to provide a consistent theory for the limiting reflected equation and in particular to interpret in a relevant manner the reflection term. The last step in our work is to establish the aforementioned Lipschitz property of the semigroup by adapting earlier ideas from the Bismut-Elworthy-Li formula in stochastic analysis

    Logarithmic corrections in the free energy of monomer-dimer model on plane lattices with free boundaries

    Full text link
    Using exact computations we study the classical hard-core monomer-dimer models on m x n plane lattice strips with free boundaries. For an arbitrary number v of monomers (or vacancies), we found a logarithmic correction term in the finite-size correction of the free energy. The coefficient of the logarithmic correction term depends on the number of monomers present (v) and the parity of the width n of the lattice strip: the coefficient equals to v when n is odd, and v/2 when n is even. The results are generalizations of the previous results for a single monomer in an otherwise fully packed lattice of dimers.Comment: 4 pages, 2 figure

    Monomer-dimer model in two-dimensional rectangular lattices with fixed dimer density

    Full text link
    The classical monomer-dimer model in two-dimensional lattices has been shown to belong to the \emph{``#P-complete''} class, which indicates the problem is computationally ``intractable''. We use exact computational method to investigate the number of ways to arrange dimers on m×nm \times n two-dimensional rectangular lattice strips with fixed dimer density ρ\rho. For any dimer density 0<ρ<10 < \rho < 1, we find a logarithmic correction term in the finite-size correction of the free energy per lattice site. The coefficient of the logarithmic correction term is exactly -1/2. This logarithmic correction term is explained by the newly developed asymptotic theory of Pemantle and Wilson. The sequence of the free energy of lattice strips with cylinder boundary condition converges so fast that very accurate free energy f2(ρ)f_2(\rho) for large lattices can be obtained. For example, for a half-filled lattice, f2(1/2)=0.633195588930f_2(1/2) = 0.633195588930, while f2(1/4)=0.4413453753046f_2(1/4) = 0.4413453753046 and f2(3/4)=0.64039026f_2(3/4) = 0.64039026. For ρ<0.65\rho < 0.65, f2(ρ)f_2(\rho) is accurate at least to 10 decimal digits. The function f2(ρ)f_2(\rho) reaches the maximum value f2(ρ)=0.662798972834f_2(\rho^*) = 0.662798972834 at ρ=0.6381231\rho^* = 0.6381231, with 11 correct digits. This is also the \md constant for two-dimensional rectangular lattices. The asymptotic expressions of free energy near close packing are investigated for finite and infinite lattice widths. For lattices with finite width, dependence on the parity of the lattice width is found. For infinite lattices, the data support the functional form obtained previously through series expansions.Comment: 15 pages, 5 figures, 5 table

    Dual Monte Carlo and Cluster Algorithms

    Full text link
    We discuss the development of cluster algorithms from the viewpoint of probability theory and not from the usual viewpoint of a particular model. By using the perspective of probability theory, we detail the nature of a cluster algorithm, make explicit the assumptions embodied in all clusters of which we are aware, and define the construction of free cluster algorithms. We also illustrate these procedures by rederiving the Swendsen-Wang algorithm, presenting the details of the loop algorithm for a worldline simulation of a quantum S=S= 1/2 model, and proposing a free cluster version of the Swendsen-Wang replica method for the random Ising model. How the principle of maximum entropy might be used to aid the construction of cluster algorithms is also discussed.Comment: 25 pages, 4 figures, to appear in Phys.Rev.

    Weighted distances in scale-free preferential attachment models

    Full text link
    We study three preferential attachment models where the parameters are such that the asymptotic degree distribution has infinite variance. Every edge is equipped with a non-negative i.i.d. weight. We study the weighted distance between two vertices chosen uniformly at random, the typical weighted distance, and the number of edges on this path, the typical hopcount. We prove that there are precisely two universality classes of weight distributions, called the explosive and conservative class. In the explosive class, we show that the typical weighted distance converges in distribution to the sum of two i.i.d. finite random variables. In the conservative class, we prove that the typical weighted distance tends to infinity, and we give an explicit expression for the main growth term, as well as for the hopcount. Under a mild assumption on the weight distribution the fluctuations around the main term are tight.Comment: Revised version, results are unchanged. 30 pages, 1 figure. To appear in Random Structures and Algorithm

    Enumeration of self avoiding trails on a square lattice using a transfer matrix technique

    Full text link
    We describe a new algebraic technique, utilising transfer matrices, for enumerating self-avoiding lattice trails on the square lattice. We have enumerated trails to 31 steps, and find increased evidence that trails are in the self-avoiding walk universality class. Assuming that trails behave like Aλnn1132A \lambda ^n n^{11 \over 32}, we find λ=2.72062±0.000006\lambda = 2.72062 \pm 0.000006 and A=1.272±0.002A = 1.272 \pm 0.002.Comment: To be published in J. Phys. A:Math Gen. Pages: 16 Format: RevTe

    New Lower Bounds on the Self-Avoiding-Walk Connective Constant

    Full text link
    We give an elementary new method for obtaining rigorous lower bounds on the connective constant for self-avoiding walks on the hypercubic lattice ZdZ^d. The method is based on loop erasure and restoration, and does not require exact enumeration data. Our bounds are best for high dd, and in fact agree with the first four terms of the 1/d1/d expansion for the connective constant. The bounds are the best to date for dimensions d3d \geq 3, but do not produce good results in two dimensions. For d=3,4,5,6d=3,4,5,6, respectively, our lower bound is within 2.4\%, 0.43\%, 0.12\%, 0.044\% of the value estimated by series extrapolation.Comment: 35 pages, 388480 bytes Postscript, NYU-TH-93/02/0

    A major star formation region in the receding tip of the stellar Galactic bar

    Get PDF
    We present an analysis of the optical spectroscopy of 58 stars in the Galactic plane at l=27l=27\arcdeg, where a prominent excess in the flux distribution and star counts have been observed in several spectral regions, in particular in the Two Micron Galactic Survey (TMGS) catalog. The sources were selected from the TMGS, to have a KK magnitude brighter than +5 mag and be within 2 degrees of the Galactic plane. More than 60% of the spectra correspond to stars of luminosity class I, and a significant proportion of the remainder are very late giants which would also be fast evolving. This very high concentration of young sources points to the existence of a major star formation region in the Galactic plane, located just inside the assumed origin of the Scutum spiral arm. Such regions can form due to the concentrations of shocked gas where a galactic bar meets a spiral arm, as is observed at the ends of the bars of face-on external galaxies. Thus, the presence of a massive star formation region is very strong supporting evidence for the presence of a bar in our Galaxy.Comment: 13 pages (latex) + 4 figures (eps), accepted in ApJ Let
    corecore